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Introduction|

Applications of Machine Learning in economics (due
to Sendhil Mullainathan)

1. New data
2. Predictions for policy

3. Better econometrics

» See Machine learning: an applied econometric approach, JEP

» See Athey “Beyond Prediction: Using Big Data for Policy Problems”
(2017) Science

» See Hersh, Jonathan, and Matthew Harding. "Big Data in
economics." IZA World of Labor (2018)
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https://www.aeaweb.org/articles?id=10.1257/jep.31.2.87
http://science.sciencemag.org/content/355/6324/483.abstract?casa_token=hpXiIFHPw58AAAAA:vIoEta7vXFVq5JEA9jjP-CKgSz1-UIWVoksPrqnP2q1Tg6TwVTCp5ewdwDHNVwVTCl-s5BDihvHBug
http://science.sciencemag.org/content/355/6324/483.abstract?casa_token=hpXiIFHPw58AAAAA:vIoEta7vXFVq5JEA9jjP-CKgSz1-UIWVoksPrqnP2q1Tg6TwVTCp5ewdwDHNVwVTCl-s5BDihvHBug
https://wol.iza.org/articles/big-data-in-economics/long
https://wol.iza.org/articles/big-data-in-economics/long
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» How does this differ from ML? Machine learning places
g more emphasis on large scale applications and
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Introduction|

This course

SR

Gareth James
Daniela Witten
Trevor Hastie
Robert Tibshirani

with Applications in R

J.Hersh (Chapman )

Primer in statistical learning theory, which grew
out of statistics

How does this differ from ML? Machine learning places
more emphasis on large scale applications and
prediction accuracy. Statistical learning covers

There is much overlap and cross-fertilization

Very little coding, but example code provided:
jonathan-hersh.com /machinelearningdev
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Topics covered

1. Cross-validation [Chapter 2]

with Applcatons R

9 springer.

Max Kuhn - Kiell Johnson

Applied
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1. Cross-validation [Chapter 2]
. Shrinkage methods (Ridge and LASSO)

[Chapter 6]

. Classification [Chapter 4, APM Chapter

11-12]

. Tree-based methods (Decision trees,

bagging, random forest boosting) [Chapter
8]

. Unsupervised learning (PCA, k-means

clustering, hierarchical clustering) [Chapter
10]

. Caret Automated Machine Learning [APM]
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Preliminary Terminology
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Preliminary Terminology

Supervised vs. unsupervised learning

Def: Supervised learning

for every x; we also observe a response y;

Ex: Estimating housing values by OLS or random forest;

Def: Unsupervised learning

for each observation we only observe x;, but do not observe y;

Ex: Clustering customers into segments; using principle component
analysis for dimension reduction
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Test, Training, and Validation Set

» Training set: (observation-wise) subset of data
used to develop models

Training
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Test, Training, and Validation Set

» Training set: (observation-wise) subset of data
used to develop models

» Validation set: subset of data used during
intermediate stages to “tune” model
parameters

» Test set: subset of data (used sparingly) to
approximate out of sample fit

Test

Validation
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Assessing model accuracy

Mean squared error

measures how well model predictions match observed data
2
. 1N .
MSE ( f = — i — f(x
(F09) = 2 | 2~ 7
- data model
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Assessing model accuracy

Mean squared error

measures how well model predictions match observed data

2

i —F(x)
N~ Y~
data model

T ONA

1

. 1N
MSE (F(x)) =
=1

» Training MSE vs Test MSE: good in-sample fit (low training MSE)
can often obscure poor out of sample fit (high test MSE)
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Bias-Variance Trade-off|

Quick example on out-of-sample fit

> Let’s compare three estimators to see how estimator complexity
affects out of sample fit

1. fi = linear regression (in )

2. f, = third order polynomial (in black)

3. f3 = very flexible smoothing spline (in )
[ELTISTTTRTTTEIT E TRE]
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Case 1: True f(x) slightly complicated

© Test MSE
a7 /linear model Test MSE,
o
- most
S flexible
o
= 5 model
& el
© 8
> g
o
D o | N
© c o 17
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s
<+ .
Training® - ——
o~ MSE, _ « | Training MSE,
linear 3 - most
T T T T T T model T T T T ﬂ bl
0 20 40 60 80 100 2 5 10 20 exible
model
X Flexibility

FIGURE 2.9. Left: Data simulated from f, shown in black. Three estimates of
f are shown: the linear regression line (orange curve), and two smoothing spline
fits (blue and green curves). Right: Training MSE (grey curve), test MSE (red
curve), and minimum possible test MSE over all methods (dashed line). Squares
represent the training and test MSEs for the three fits
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Case 2: True f(x) not complicated at all

0
o
Y. Test MSE,
o linear model
o | o
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FIGURE 2.10. Details are as in Figure 2.9, using a different true f that is
much closer to linear. In this setting, linear regression provides a very good fit to
the data.
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Case 3: True f(x) very complicated

o |
(Y
<+— Test MSE,
Q linear model
w _]
s -
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o B linear model
> § 2
o
1]
c
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o
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FIGURE 2.11. Details are as in Figure 2.9, using a different f that is far from
linear. In this setting, linear regression provides a very poor fit to the data.
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Bias-Variance Trade-off|

How to select right model complexity?

g g 3
& & &
4
Size Size Size_ .
Gl] - ﬂ]_']l‘ ﬂ” + H.I_;- -+ H-z.‘i"z By +hx + ﬂg.r"’ -+ fy‘:i.f"; + r‘?_|,r'1
High bias “Just right” High variance
(underfit) (overfit)
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Bias-Variance Trade-off|

Generalizing this problem: Bias-Variance tradeoff

High Bias Low Bias

Low Variance High Variance
o -------- L -
o
B
et
€3]
[=]
]
B
5 Y Test Sample
o)
= Ve
[aW

Training Sample
Low ) High
Underfit Overfit

Model Complexity

FIGURE 2.11. Test and training error as a function of model complexity.
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Bias Variance Tradeoff in Math

2

Prediction Error: E {( yi — ?(x,-)) ]
S =
data model

E {(y - %)2} = E [yZ +F2 - 2yﬂ (expanding terms)

_ [yz] . E [?2] _E [2yﬂ
——— N~——
EVar(y)—i—]E[y]2 zVar(f‘)JrIE[?%]2

= Var(y)+ E [y]? + Var (f‘) +E {?]2 —E {2yﬂ (def'n var)
yEf(X)HJr:IE[E]:O

= Var(y) + Var (zA‘) + (E {?}2 —E {ny‘] +f2)  (def'ny)
M=FAFT M E 1FFE



Bias Variance Tradeoff in Math
= Var (y) + Var (?)—i—(f—E{ﬂy

——
=E[((y—E)’|=E[((y—)*|=E[?]=Var(e)=0?
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Bias Variance Tradeoff in Math

= Ver ) +Var(%)+(f_1am)2
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Bias Variance Tradeoff in Math

= Ver ) +Var(%)+(f_1am)2
=E[((y—Ely])*|=E[((y—f)*|=E[e}]=Var(c)=02

E y-—? = o2 + Var (F)+(|F—E|f 2
[<I )] irredu?lfl.gerror E’Ec_el Lbigs[ﬂ/

» Bias is minimized when f = E [?]
» But total error (variance + bias) may be minimized by some
other f
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Bias Variance Tradeoff in Math

= Ver ) +Var(%)+(f_1am)2
=E[((y—Ely])*|=E[((y—f)*|=E[e}]=Var(c)=02

E[(i-H)]= o2 +var(A)+([f-E[])
[<I )] irredu?lfl.gerror E’Ec_el Lbi;s[ﬂ/

» Bias is minimized when f = E [?]
» But total error (variance + bias) may be minimized by some
other f

» f(x) with smaller variance = fewer variables, smaller magnitude

coefficients [EITE T TR F TR
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Cross-Validation

» Cross-validation is a tool to approximate out of sample fit

> In machine learning, many models have parameters that must be
“tuned”

» We adjust these parameters using using cross-validation
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Cross-Validation

\4

Cross-validation is a tool to approximate out of sample fit

v

In machine learning, many models have parameters that must be
“tuned”

v

We adjust these parameters using using cross-validation

v

Also useful to select between large classes of models
e.g random forest vs lasso

LT CIFETTRLITEIT TR

J.Hersh (Chapman ) Intro & CV February 27, 2019 22 /29



K-fold Cross-Validation (CV)

Train Train Validation Train Train

K-fold CV Algorithm
1. Randomly divide the data into K equal sized parts or “folds”.
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K-fold Cross-Validation (CV)

Train Train Validation Train Train

K-fold CV Algorithm
1. Randomly divide the data into K equal sized parts or “folds”.
2. Leave out part k, fit the model to the other K — 1 parts.
3. Use fitted model to obtain predictions for left-out k-th part
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K-fold Cross-Validation (CV)

Train Train Validation Train Train

K-fold CV Algorithm
1. Randomly divide the data into K equal sized parts or “folds”.
2. Leave out part k, fit the model to the other K — 1 parts.
3. Use fitted model to obtain predictions for left-out k-th part

4. Repeat until k =1,..., K and combine results
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K-Fold CV Example 2

4.4 Resampling Techniques 71
OriginalData QW W@ LIO QMW & w
Build Model With Predict On
CV Group #1 LHOONUGGY | OVWO
CV Group #2 QuO Haeao LHOOM
CvGroup#3 QR UWOLIOOM (VEEESEN

Fig. 4.6: A schematic of threefold cross-validation. Twelve training set sam-
ples are represented as symbols and are allocated to three groups. These
groups are left out in turn as models are fit. Performance estimates, such as
the error rate or R? are calculated from each set of held-out samples. The aver-
age of the three performance estimates would be the cross-validation estimate
of model performance. In practice, the number of samples in the held-out sub-
sets can vary but are roughly equal size



Details of K-Fold CV

> Let ny be the number of test observations in fold k, where ny = N/K

» Cross-Validation Error for fold k:
Ko n
CVisg = Y 3y MSEx
k=1

where MSEj = 3" cc, (vi — 9)? /ny is the mean squared error of fold k
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Details of K-Fold CV

> Let ny be the number of test observations in fold k, where ny = N/K
» Cross-Validation Error for fold k:

K
Vg = 3 T MSEy
k=1

where MSEj = 3" cc, (vi — 9)? /ny is the mean squared error of fold k

» Setting k = N is referred to as leave-one out cross-validation
(LOOCV)
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Cross-Validation|

Classical frequentist model selection
Akaike information criterion (AIC)

2 d

where d is the number of parameters in our model

Bayesian information criterion (BIC)

BIC = —2 - loglik + (log N) - d
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Cross-Validation|

Classical frequentist model selection
Akaike information criterion (AIC)

2 d

where d is the number of parameters in our model

Bayesian information criterion (BIC)

BIC = —2 - loglik + (log N) - d

» Both penalize models with more parameters in a somewhat arbitrary
fashion

» This usually helps with model selection, but still does not answer the
important question of model assessment
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What is the Optimal Number of Folds, K?

» Do you want big or a small training folds?
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What is the Optimal Number of Folds, K?

» Do you want big or a small training folds?

» Because training set is only (K — 1)/K as big as the full dataset, the
estimates of the prediction error will be biased upward.

» Bias is minimized when K = N (LOOCV)
But LOOCV has higher variance!

v
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What is the Optimal Number of Folds, K?

» Do you want big or a small training folds?

» Because training set is only (K — 1)/K as big as the full dataset, the
estimates of the prediction error will be biased upward.

» Bias is minimized when K = N (LOOCV)
But LOOCV has higher variance!

No clear statistical rules for how to set k

v

v

v

Convention is to set K =5 or 10 — in practice is a good trade-off
between bias and variance for most problems
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Conclusion|

Conclusion

» Econometric models are at risk for overfitting

» But what we want are theories that extend beyond the dataset we
have on our computer

» Cross-validation is a key tool that allows us to adjust models so that
they more closely match reality
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