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with Applications in R

a Springer
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Shrinkage Methods

» Consider the case where we have many
more variables than predictors
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Intro and Background

Shrinkage Methods

» Consider the case where we have many
more variables than predictors

» Shrinkage methods fit a model with
all p predictors, but estimate
coefficients are “shrunken” towards
zero

> In extreme case,
N < p=p=(XTX)"1(XTY) not full

rank = cannot invert

» Example: bioinformatics. Predict cancer
cells (Y), by gene type (X)
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Recall: bias-variance tradeoff
2

Prediction Error: E vi —F(x) = Var (y) + Var (?) + (f —E [;
~ =~

data model

Prediction Error

irreducible error ——— -

» Bias is minimized when f = E [?]

» But total error (variance + bias) may be minimized by some
other f



Recall: bias-variance tradeoff

2

Prediction Error: E vi —F(x) = Var (y) + Var (?) + (f —E [;
~ =~

data model

Prediction Error

irreducible error ——— -

» Bias is minimized when f = E [?]

» But total error (variance + bias) may be minimized by some
other f

> f(x) with smaller variance = fewer variables, smaller magnitude

coefficients O T e
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Ridge Regression

N P 2

OLS Sum of Squared Resids = Z Vi — Zﬁjx,-j
i=1 j=1

Squared Sum of Residuals
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Ridge Regression

N 2

P
OLS Sum of Squared Resids = Z Vi — Z,Bjx,-j
i=1 j=1

Squared Sum of Residuals

an

» To reduce prediction error: minimize Var(f (x)) = Var(Xp3)

» One way: decrease (3 in absolute value
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Ridge Regression

Ridge Regression

Ridge estimator 3R is defined as
N p 2 P
Bridge = argminy_ | yi— > Bixz | + A->_ 57
A=t j=1 j=1
———
RSS Shrinkage Factor
where A > 0is a (or hyper-parameter)
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Ridge Continued

» The ridge estimator also wants to find coefficients that fits the data
well, and reduces RSS

» The second term, X - ZJ‘-’ZI BJ-Z ensures that it does so in a
balanced way, so that bias isn’t minimized at the expense of
variance
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Ridge Continued

\4

The ridge estimator also wants to find coefficients that fits the data
well, and reduces RSS

v

The second term, )\ - ZJ‘-’ZI BJ-Z ensures that it does so in a
balanced way, so that bias isn’t minimized at the expense of
variance

v

The tuning parameter A controls the relative impact of bias and
variance

v

Larger A = more bias

Note as A — oo = R — 0
Note as A — 0 = gR — poLts
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Ridge Continued

» In matrix form:
BR = (XTX 4+ Mk)"HXTY)

» Note is positive definite even when K > N
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Ridge Continued

In matrix form:

v

BR = (XTX 4+ Mk)"HXTY)

v

Note is positive definite even when K > N

v

Coefficients are shrunk smoothly towards zero.
Bayesian interpretation: Laplace priors SR ~ N(O,Tle) BR is the
posterior mean/mode/median

v
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Ridge Regression

How to Choose \?

> In practice we estimate a range of \ values and choose
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Ridge Regression

Root Mean Squared Error Across A Values

6.4 Penalized Models 125
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Fig. 6.16: The cross-validation profiles for a ridge regression model
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Ridge Regression

Root Mean Squared Error Across A Values

6.4 Penalized Models 125
1 1 1 1 1 1
0.720 o
= 0.715 o
§ Error
g minimizing
5 0.710 value of B
>‘ lambda
é 0.705 -
Q
w 0.700 o
2]
=
o
0.695 o
0.690 o
T T T T T T
0.00 0.02 0.04 0.06 0.08 0.10
Penalty

Fig. 6.16: The cross-validation profiles for a ridge regression model

LI CIFETTRLITEIT F TR

J.Hersh (Chapman) Ridge & Lasso! February 27, 2019




Ridge Notes

» Small amount of shrinkage usually improves prediction performance

Paricularly when the number of variables is large and variance is likely
high
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Ridge Notes

» Small amount of shrinkage usually improves prediction performance

Paricularly when the number of variables is large and variance is likely
high

» Variables are never completely shrunk to zero — but very small in
absolute value
Works poorly for variable selection
Useful for when you have reason to suspect underlying DGP is
non-sparse
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_[Into and Backeround] Ridge Regression ] [Lassd] [Applications & Bxensiond [Conclusiod
How can ridge help with multicollinearity?

» Quick example in R

#Generate x1 and x2 that are highly colinear
x1 <- rnorm(20)

x2 <- rnorm(20,mean=x1,sd=.01)

y <- rnorm(20,mean=3+x1+x2)

# OLS Reg

OLSmod <- lm(y~x1+x2)

#Ridge Reg

RIDGEmod <- lm.ridge(y~x1+x2,lambda=1)

LI CIFETTRLITEIT F TR
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Multicollinearity Example

> OLSmod

Call:
Im(formula = y ~ x1 + x2)

Coefficients:
(Intercept) x1 X2 >
2.169 50.386 -48.784

> 1m.ridge(y~x1+x2,lambda=1)
x1 X2
2.4710161 ©.86@5031 @.3062424
> vif(OLSmod)
X1 x2
17687.3 17687.3
>

J.Hersh (Chapman) Ridge & Lasso



Red line = OLS, Blue = Ridge
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LASSO (Least Absolute Shrinkage and Selection
Operator) (Tibshirani, 1996)

» Lasso Regression looks very similar to Ridge

» Lasso estimator 31255 will minimize the modified likelihood

N

2
p p
> (yi —Bo— 5inj) + A 1Bl
= =

i=1

—_———
RSS Shrinkage Factor

where A > 0 is a tuning parameter
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i=1

N P 2 P
> (yi —Bo— 5inj> + A 1Bl
=1 =1
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RSS Shrinkage Factor
where A >0 is a

» Magnitude of variables is “penalized” with absolute value loss

» Because of absolute value, more efficient to “spend” only on useful
variables

Acts as variable selection. Though will in addition get shrinkage of
estimates towards zero



LASSO (Least Absolute Shrinkage and Selection
Operator) (Tibshirani, 1996)

» Lasso Regression looks very similar to Ridge

» Lasso estimator 31255 will minimize the modified likelihood

N P 2 P
> (yi —Bo— 5inj> + A 1Bl
=1 =1

i=1

—_———
RSS Shrinkage Factor

where A >0 is a

» Magnitude of variables is “penalized” with absolute value loss

» Because of absolute value, more efficient to “spend” only on useful
variables

Acts as variable selection. Though will in addition get shrinkage of
estimates towards zero

> Again as A — 0= pLas0 — BOLS a5 \ — 00 = pLasse 5 0
EEIRE! I T E \FFE



Visualization Lasso, Ridge, and OLS Coefficients

Lasso Ridge
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Comparing Ridge and Lasso

» No analytic solution to Lasso, unlike ridge, but computationally very
feasible with large datasets given the convex optimization problem.
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Lasso|

Comparing Ridge and Lasso

» No analytic solution to Lasso, unlike ridge, but computationally very
feasible with large datasets given the convex optimization problem.

» With large datasets, inverting (XTX + Alk) is expensive

» Lasso has favorable properties if the true model is sparse.
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Lasso|

Comparing Ridge and Lasso

v

No analytic solution to Lasso, unlike ridge, but computationally very
feasible with large datasets given the convex optimization problem.

v

With large datasets, inverting (XTX + Alk) is expensive

v

Lasso has favorable properties if the true model is sparse.

v

If the distribution of coefficients is very thick tailed (few variables
matter a lot) Lasso will do much better than ridge. If there are many
moderate sized effects, ridge may do better

LI CIFETTRLTTEIT TR
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Lasso|

Social Scientists are Coming Around to Lasso

Justin Wolfers x
i

JustinWolfers

Imbens, citing @StatModeling: “LASSO is the

new OLS.”
@Susan_Athey adds: “Not just for big data.” It's
all about systematic model selection.

25 30 BERER-EBEBE
2:49 PM - 18 Jul 2015

¥ 30
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Lasso|

Bayesian Interpretation of Lasso

> Lasso coefficients are the mode of the posterior distribution, given a
normal linear model with Laplace priors p(3) o< exp (A > —1 |5«])

» Slightly odd that we're picking the mode rather than the mean from
the posterior distribution

> Related: prior
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Related Estimators

» Least Angle RegreSsion (LARS) - The “S” here suggests stepwise.

A stagewise iterative procedure that iteratively selects regressors to be
included in the regression function
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Lasso type regularization, but minimizing the maximum correlation
between residuals and covariates
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Related Estimators

» Least Angle RegreSsion (LARS) - The “S” here suggests stepwise.
A stagewise iterative procedure that iteratively selects regressors to be
included in the regression function

» Dantzig Selector (Candes & Tao, 2007)

Lasso type regularization, but minimizing the maximum correlation
between residuals and covariates
Doesn't particularly work well.

» Elastic-Net

N
min ¢ > (Y; = XiB)? + x| a8l +(L—a)-[8]3
B8 = —— —_—
Lasso penalty Ridge penalty
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Related Estimators

» Least Angle RegreSsion (LARS) - The “S” here suggests stepwise.

A stagewise iterative procedure that iteratively selects regressors to be
included in the regression function

» Dantzig Selector (Candes & Tao, 2007)
Lasso type regularization, but minimizing the maximum correlation
between residuals and covariates
Doesn't particularly work well.

» Elastic-Net

N

min S (Yi=XB)+ A a- Bl +(1-a)- |83
—— —_————

i=1 Lasso penalty Ridge penalty

« controls the weighting between ridge and Lasso, obtained through
cross-validation

[ELTIRTTTRTTTEIT E TRE]
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Oracle Property (Fan and Zhuo, 2001)

» If the true model is sparse -- so that there are few (say k* ) true
non-zero coefficients — and many true zero coefficients (K — k*) an
estimator has the oracle property if inference is as if you knew
the true model, i.e. knew a priori exactly which coefficients were

truly zero.
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Oracle Property (Fan and Zhuo, 2001)

» If the true model is sparse -- so that there are few (say k* ) true
non-zero coefficients — and many true zero coefficients (K — k*) an
estimator has the oracle property if inference is as if you knew
the true model, i.e. knew a priori exactly which coefficients were
truly zero.

» Limitation: sample size needs to be large relative to k

» What this means: you can ignore the selection of covariates in the
calculation of the standard errors. Can just use regular OLS SEs
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Estimating Lasso/Ridge Model in R

» Many packages, but glmnet is maintained by Tibshirani

> cv.glmnet() estimates a series of Lasso models for various levels of A

lasso.mod <- cv.glmnet(x = X, y = Y, alpha = 1, nfolds = 10) J

> build.x() and build.y() are helper functions for glmnet that build
glmnet compatible X and Y matrices respectively.

Xvars <- build.x(formula, data = df)
Yvar <- build.y(formula, data = df) }

LI CIFETTRLITEIT TR
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Intro and Background Applications & Extensions|

Stata Implementation of Lasso: elasticregress

Title
elasticregress — Elastic net regression
lassoregress — LASSO regression

ridgeregress — Ridge regression

Syntax
elasticregress depvar [indepvars] [if] [in] [weight] [, alpha(#) options
lassoregress depvar [indepvars] [if] [in] [weight] [, options

ridgeregress depvar [indepvars] [if] [in] [weight] [, options]

options Description

Main
alpha weight placed on the LASSO (L1) norm, one minus weight placed on the ridge (L2) norm - by default found by cross-validat
lambda penalty placed on larger coefficients — by default found by cross-validation
nunfolds number of folds used when cross-validating lambda or alpha - default is 10

Options which only matter when alpha is found through cross-validation
numalpha number of alpha tested when alpha is found by cross-validation

J.Hersh (Chapman)

February 27, 2019 29 / 43



Lasso|

Automatic o Selection: Package glmnetUtils

Introduction to gimnetUtils

The glmnetUtils package provides a collection of tools to streamline the process of fitting elastic net models

with glmnet. | wrote the package after a couple of projects where | found myself writing the same boilerplate

code to convert a data frame into a predictor matrix and a response vector. In addition to providing a formula
interface, it also features a function cva.glmnet to do crossvalidation for both ¢ and 4, as well as some utility
functions.

The formula interface

The interface that gimnetUtils provides is very much the same as for most modelling functions in R. To fit a
model, you provide a formula and data frame. You can also provide any arguments that gimnet will accept. Here
are some simple examples for different types of data:

# least squares regression
(mtcarsMod <- glmnet(mpg ~ cyl + disp + hp, data=mtcars))

## Call:

## glmnet. fornulaCfornula = mpg ~ cyl + disp + hp, data = mtcars)
##

## Model fitting options:

## Sparse model matrix: FALSE

## Use model.frame: FALSE

## Alpha: 1

##  Lambda summary:

##  Min. st Qu. Median  Mean 3rd Qu.  Max.

## 0.03326 0.11690 0.41003 1.02839 1.44125 5.05505

J.Hersh (Chapma
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Automatic o Selection: Function cva.glmnet

Crossvalidation for o

One piece missing from the standard glmnet package is a way of choosing a, the elastic net mixing parameter,
similar to how cv.glmnet chooses 4, the shrinkage parameter. To fix this, gimnetUtils provides the cva. glmnet

function, which uses crossvalidation to examine the impact on the model of changing @ and 4. The interface is
the same as for the other functions:

# Leukemia dataset from Trevor Hastie's website:
# http://web. stanford. edu/~hastie/glmnet/glmnetData/L eukemia. Roata
leuk <- do.call(data.frame, Leukemia)

leukMod <- EV.glmnet(y ~ ., data=leuk, family="binomial")
LeukMod

## Call:
## cva.glmnet. formula(formula = y ~ ., data = leuk, family = "binomial")
##

## Model fitting options:

## Sparse model matrix: FALSE

##  Use model.frame: FALSE

##  Alpha values: @ 0.001 0.008 0.027 0.064 0.125 0.216 0.343 0.512 0.729 1
##  Number of crossvalidation folds for lambda: 10

J.Hersh (Chapmar
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Caveats of Lasso for Poverty Modeling

1. Because ’/BLasso‘ < ’/BOLS‘ = U}Iasso| < |)A/OL$|
1.1 Don't predict from Lasso, use Lasso for model selection, then do ELL
2. Lasso may drop variables with hierarchical relationships, e.g. age and
age®
2.1 Use Sparse Group Lasso (SGL package) which specifies hierarchical
structure (e.g. if select age2, must select age).
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[Conclusion]
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Afzal, Hersh and Newhouse (2015)

» Lasso for model selection for poverty mapping in Sri Lanka and
Pakistan [source]
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https://www.dropbox.com/s/fzzeghkqonvjkfp/Building%20a%20better%20model_draft_jh%20090815.pdf?dl=0

Afzal, Hersh and Newhouse (2015) Continued

» Lasso works well for model selection when # of candidate
variables is large (100+)

» No worse than stepwise when set of variables is small
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Applications & Extensions]

Post-Model Selection Estimator: Belloni &
Chernozhukov, 2013

» Belloni & Chernozhukov (2013) define the two step Post-Lasso
estimator as

1. Estimate a Lasso model using full candidate set of variables
(Xcandidate)
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Chernozhukov, 2013

» Belloni & Chernozhukov (2013) define the two step Post-Lasso
estimator as

1. Estimate a Lasso model using full candidate set of variables
(Xcandidate)

2. Use selected variables (Xscjected) to estimate final model using
modeling strategy of choice
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Applications & Extensions]

Post-Model Selection Estimator: Belloni &
Chernozhukov, 2013

» Belloni & Chernozhukov (2013) define the two step Post-Lasso
estimator as

1. Estimate a Lasso model using full candidate set of variables

(Xcandidate)
2. Use selected variables (Xscjected) to estimate final model using
modeling strategy of choice

» Because of of Lasso (Fan and Li, 2001) inference in
the second stage using the reduced set of variables is consistent with
inference with single stage estimation strategy using only the selected
variables present in the true data-generating process
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Heteroscedastic Robust Lasso

» See: Belloni, Chen, Chernozhukov, Hansen (Econometrica, 2012)
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Applications & Extensions]

Double Selection Procedure for Estimating
Treatment Effects

» Consider the problem of estimating the effect of treatment d; on some
outcome y; in the presence of possibly confounding controls x;
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Applications & Extensions]

Double Selection Procedure for Estimating
Treatment Effects

» Consider the problem of estimating the effect of treatment d; on some
outcome y; in the presence of possibly confounding controls x;

Method:

1. Select via Lasso controls xj; that predict y;
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Applications & Extensions]

Double Selection Procedure for Estimating
Treatment Effects

» Consider the problem of estimating the effect of treatment d; on some
outcome y; in the presence of possibly confounding controls x;
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» Consider the problem of estimating the effect of treatment d; on some
outcome y; in the presence of possibly confounding controls x;
Method:
1. Select via Lasso controls xj; that predict y;
2. Select via Lasso controls x;; that predict dj
3. Run OLS of y; on d; on the of controls selected in steps 1 and 2

LT CIFETTRLITEIT F TR

J.Hersh (Chapman) Ridge & Lasso February 27, 2019 38 /43



Applications & Extensions]

Double Selection Procedure for Estimating
Treatment Effects

» Consider the problem of estimating the effect of treatment d; on some
outcome y; in the presence of possibly confounding controls x;
Method:
1. Select via Lasso controls xj; that predict y;
2. Select via Lasso controls x;; that predict dj

3. Run OLS of y; on d; on the of controls selected in steps 1 and 2

» Authors' claim: additional selection step controls the omitted variable
bias

LT CIFETTRLITEIT F TR

J.Hersh (Chapman) Ridge & Lasso February 27, 2019 38 /43



Applications & Extensions]

Double Selection vs Naive Approach

Figure 1
The “Double Selection” Approach to Estimation and Inference versus a Naive
Approach: A Simulation from Belloni, Chernozhukov, and H (forthcoming)

(distributions of estimators from each approach)

A: A Naive Post-Model Selection Estimator B: A Post-Double-Selection Estimator

0 0
—8-7-6-5—4-3-2-10 1 23 456 78 —8-7-6-5-4-3-2-10 12 3 456 7 8

Source: Belloni, Chernozhukov, and Hansen (forthcoming).

Notes: The left panel shows the sampling distribution of the estimator of a based on the first naive
procedure described in this section: applying LASSO to the equation y,= d;+ x| 6, + 7, + (; while
forcing the treatment variable to remain in the model by excluding o from the LASSO penalty. The
right panel shows the sampling distribution of the “double selection” estimator (see text for details) as
in Belloni, Chernozhukov, and Hansen (forthcoming). The distributions are given for centered and
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Replicating Donohue and Levitt

Table 1
Effect of Abortion on Crime

Type of crime
Violent Property Murder
Estimator Effect Std. error Effect Std. error Effect Std. error
First-difference —.157 034 —.106 .021 -.218 .068
All controls .071 284 —.161 106 —1.827 932
Double selection -.171 117 —.061 .057 —.189 177

Notes: This table reports results from estimating the effect of abortion on violent crime, property crime,
and murder. The row labeled “First-difference” gives baseline first-difference estimates using the controls
from Donohue and Levitt (2001). The row labeled “All controls” includes a broad set of controls meant
to allow flexible trends that vary with state-level characteristics. The row labeled “Double selection”
reports results based on the double selection method outlined in this paper and selecting among the
variables used in the “All controls” results.
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Replicating AJR (2001)

Table 2
Effect of Institutions on Output

Latitude All controls Double selection
First stage —0.5872 —0.2182 —0.5429

(0.1545) (0.2011) (0.1719)
Second stage 0.9692 0.9891 0.7710

(0.2128) (0.8005) (0.1971)

Notes: In an exercise that follows the work of Acemoglu, Johnson, and Robinson (2001), this table
reports results from estimating the effect of institutions, using settler mortality as an instrument. The
row “First Stage” gives the first-stage estimate of the coefficient on settler mortality obtained by regressing
“ProtectionfromExpropriation on “SeltlerMortality,” and the set of control variables indicated in the column
heading. The row “Second stage” gives the estimate of the structural effect of institutions on log(GDP per
capita) using “SettlerMortality” as the instrument and controlling for variables as indicated in the column
heading (see text for details). Each column reports the results for different sets of control variables. The
column “Latitude” controls linearly for distance from the equator. The column “All controls” includes
16 controls defined in the main text and in footnote 9, and the column “Double selection” uses the
union of the set of controls selected by LASSO for predicting GDP per capita, for predicting institutions,
and for predicting settler mortality. Standard errors are in parentheses.
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Conclusion

Conclusion

> Use Lasso regression if you have reason to believe the true model is
sparse

» Use Ridge otherwise
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> Use Lasso regression if you have reason to believe the true model is
sparse

» Use Ridge otherwise

» Lasso's sparsity offers disciplined method of variable selection

» But be careful predicting from Lasso. Do Lasso + ELL (Elbers,
Lanjouw, Lanjouw)

» Select A\ using k-fold cross-valdiation

» Use test sample to approximate out of sample error
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