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Source material

I Introduction to Statistical Learning, Chapter 6
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Shrinkage Methods

I Consider the case where we have many
more variables than predictors

I Shrinkage methods fit a model with
all p predictors, but estimate
coefficients are “shrunken” towards
zero

I In extreme case,
N < p ⇒β = (XᵀX )−1 (XᵀY ) not full
rank ⇒ cannot invert

I Example: bioinformatics. Predict cancer
cells (Y ), by gene type (X )
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Recall: bias-variance tradeoff

Prediction Error: E


 yi︸︷︷︸

data

− f̂ (xi)︸ ︷︷ ︸
model


2 = Var (y) + Var

(
f̂
)

+
(
f − E

[
f̂
])2

Prediction Error

E
[(

yi − f̂
)]

= σ2
ε︸︷︷︸

irreducible error

+ Var
(
f̂
)

︸ ︷︷ ︸
variance

+
([

f − E
[
f̂
]])2

︸ ︷︷ ︸
bias

I Bias is minimized when f = E
[
f̂
]

I But total error (variance + bias) may be minimized by some
other f̂

I f̂ (x) with smaller variance ⇒ fewer variables, smaller magnitude
coefficients
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Ridge Regression

OLS Sum of Squared Resids =
N∑

i=1

yi −
p∑

j=1
βjxij

2

︸ ︷︷ ︸
Squared Sum of Residuals

I To reduce prediction error: minimize Var(f̂ (x)) = Var(Xβ)
I One way: decrease β in absolute value
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Ridge Regression

Definitions
Ridge estimator βR is defined as

βridge = argmin
β

N∑
i=1

yi −
p∑

j=1
βjxij

2

︸ ︷︷ ︸
RSS

+ λ ·
p∑

j=1
β2

j︸ ︷︷ ︸
Shrinkage Factor

where λ ≥ 0 is a tuning parameter (or hyper-parameter)
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Ridge Continued

I The ridge estimator also wants to find coefficients that fits the data
well, and reduces RSS

I The second term, λ ·
∑p

j=1 β
2
j ensures that it does so in a

balanced way, so that bias isn’t minimized at the expense of
variance

I The tuning parameter λ controls the relative impact of bias and
variance

I Larger λ⇒ more bias
H Note as λ→∞⇒ βR → 0
H Note as λ→ 0⇒ βR → βOLS
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Ridge Continued

I In matrix form:
βR = (XᵀX + λIK )−1(XᵀY )

I Note is positive definite even when K > N

I Coefficients are shrunk smoothly towards zero.
I Bayesian interpretation: Laplace priors βR ∼ N

(
0, τ2IK

)
βR is the

posterior mean/mode/median
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How to Choose λ?
I In practice we estimate a range of λ values and choose
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Root Mean Squared Error Across λ Values
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Ridge Notes

I Small amount of shrinkage usually improves prediction performance
H Paricularly when the number of variables is large and variance is likely

high

I Variables are never completely shrunk to zero – but very small in
absolute value

H Works poorly for variable selection
H Useful for when you have reason to suspect underlying DGP is

non-sparse
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How can ridge help with multicollinearity?

I Quick example in R

#Generate x1 and x2 that are highly colinear
x1 <- rnorm(20)
x2 <- rnorm(20,mean=x1,sd=.01)
y <- rnorm(20,mean=3+x1+x2)
# OLS Reg
OLSmod <- lm(y~x1+x2)
#Ridge Reg
RIDGEmod <- lm.ridge(y~x1+x2,lambda=1)
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Multicollinearity Example
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Red line = OLS, Blue = Ridge
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LASSO (Least Absolute Shrinkage and Selection
Operator) (Tibshirani, 1996)

I Lasso Regression looks very similar to Ridge
I Lasso estimator βLasso will minimize the modified likelihood

N∑
i=1

yi − β0 −
p∑

j=1
βjxij

2

︸ ︷︷ ︸
RSS

+ λ
p∑

j=1
|βj |︸ ︷︷ ︸

Shrinkage Factor

where λ ≥ 0 is a tuning parameter

I Magnitude of variables is “penalized” with absolute value loss
I Because of absolute value, more efficient to “spend” only on useful

variables
H Acts as variable selection. Though will in addition get shrinkage of

estimates towards zero
I Again as λ→ 0⇒ βLasso → βOLS , as λ→∞⇒ βLasso → 0
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Visualization Lasso, Ridge, and OLS Coefficients
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Comparing Ridge and Lasso

I No analytic solution to Lasso, unlike ridge, but computationally very
feasible with large datasets given the convex optimization problem.

I With large datasets, inverting (XᵀX + λIK ) is expensive
I Lasso has favorable properties if the true model is sparse.
I If the distribution of coefficients is very thick tailed (few variables

matter a lot) Lasso will do much better than ridge. If there are many
moderate sized effects, ridge may do better
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Social Scientists are Coming Around to Lasso
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Bayesian Interpretation of Lasso

I Lasso coefficients are the mode of the posterior distribution, given a
normal linear model with Laplace priors p(β) ∝ exp (λ

∑
k=1 |βk |)

I Slightly odd that we’re picking the mode rather than the mean from
the posterior distribution

I Related: Spike and Slab prior
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Related Estimators
I Least Angle RegreSsion (LARS) - The “S” here suggests stepwise.

H A stagewise iterative procedure that iteratively selects regressors to be
included in the regression function

I Dantzig Selector (Candes & Tao, 2007)
H Lasso type regularization, but minimizing the maximum correlation

between residuals and covariates
H Doesn’t particularly work well.

I Elastic-Net

min
β


N∑

i=1
(Yi − Xiβ)2 + λ

 α · ‖β‖1︸ ︷︷ ︸
Lasso penalty

+ (1− α) · ‖β‖22︸ ︷︷ ︸
Ridge penalty




H α controls the weighting between ridge and Lasso, obtained through
cross-validation
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Oracle Property (Fan and Zhuo, 2001)

I If the true model is sparse -- so that there are few (say k∗ ) true
non-zero coefficients – and many true zero coefficients (K − k∗) an
estimator has the oracle property if inference is as if you knew
the true model, i.e. knew a priori exactly which coefficients were
truly zero.

I Limitation: sample size needs to be large relative to k

I What this means: you can ignore the selection of covariates in the
calculation of the standard errors. Can just use regular OLS SEs
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Estimating Lasso/Ridge Model in R

I Many packages, but glmnet is maintained by Tibshirani
I cv.glmnet() estimates a series of Lasso models for various levels of λ

lasso.mod <- cv.glmnet(x = X, y = Y, alpha = 1, nfolds = 10)

I build.x() and build.y() are helper functions for glmnet that build
glmnet compatible X and Y matrices respectively.

Xvars <- build.x(formula, data = df)
Yvar <- build.y(formula, data = df)
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Stata Implementation of Lasso: elasticregress

J.Hersh (Chapman) Ridge & Lasso February 27, 2019 29 / 43



Intro and Background Ridge Regression Lasso Applications & Extensions Conclusion

Automatic α Selection: Package glmnetUtils
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Automatic α Selection: Function cva.glmnet
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Caveats of Lasso for Poverty Modeling

1. Because |βLasso| < |βOLS | ⇒ |ŷlasso| < |ŷOLS |
1.1 Don’t predict from Lasso, use Lasso for model selection, then do ELL

2. Lasso may drop variables with hierarchical relationships, e.g. age and
age2

2.1 Use Sparse Group Lasso (SGL package) which specifies hierarchical
structure (e.g. if select age2, must select age).
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Afzal, Hersh and Newhouse (2015)
I Lasso for model selection for poverty mapping in Sri Lanka and

Pakistan [source]
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Afzal, Hersh and Newhouse (2015) Continued

I Lasso works well for model selection when # of candidate
variables is large (100+)

I No worse than stepwise when set of variables is small
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Post-Model Selection Estimator: Belloni &
Chernozhukov, 2013

I Belloni & Chernozhukov (2013) define the two step Post-Lasso
estimator as

1. Estimate a Lasso model using full candidate set of variables
(Xcandidate)

2. Use selected variables (Xselected) to estimate final model using
modeling strategy of choice

I Because of oracle property of Lasso (Fan and Li, 2001) inference in
the second stage using the reduced set of variables is consistent with
inference with single stage estimation strategy using only the selected
variables present in the true data-generating process
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variables present in the true data-generating process
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Heteroscedastic Robust Lasso

I See: Belloni, Chen, Chernozhukov, Hansen (Econometrica, 2012)
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Double Selection Procedure for Estimating
Treatment Effects

I Consider the problem of estimating the effect of treatment di on some
outcome yi in the presence of possibly confounding controls xi

Double Selection Method:
1. Select via Lasso controls xij that predict yi

2. Select via Lasso controls xij that predict di

3. Run OLS of yi on di on the union of controls selected in steps 1 and 2

I Authors’ claim: additional selection step controls the omitted variable
bias
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Double Selection vs Naive Approach
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Replicating Donohue and Levitt
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Replicating AJR (2001)
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Plan

1 Intro and Background
Introduction

2 Ridge Regression
Example: Ridge & Multicollinearity

3 Lasso

4 Applications & Extensions

5 Conclusion
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Conclusion

I Use Lasso regression if you have reason to believe the true model is
sparse

I Use Ridge otherwise

I Lasso’s sparsity offers disciplined method of variable selection
I But be careful predicting from Lasso. Do Lasso + ELL (Elbers,

Lanjouw, Lanjouw)
I Select λ using k-fold cross-valdiation
I Use test sample to approximate out of sample error
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