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How do ML engineers use classification?

» Image classification

» Speech recognition

» Fraud detection

» Spam detection

> Advertising
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Source material

Max Kuhn - Kjell Johnson

| Applied

An Introduction PrEd ICtlve
g M Modeling

» ISLR Chapter 4; APM Chapters 11, 12 & 16
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@ [Simple Classification |
o [Introductionl
@ |Logistic regression|
@ [Regularized logistid|
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Machine Learning Classification Methods

Linear Classification Methods
» Linear Regression
> Probit
> Logit
» Linear Discriminant Analysis

» Regularized Probit/Logit
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Machine Learning Classification Methods

Linear Classification Methods Nonlinear Methods
» Linear Regression » Neural Networks
» Probit » Support Vector Machines (SVM)
» Logit » K-Nearest Neighbors (k-NN)
» Linear Discriminant Analysis > Regression Trees
» Regularized Probit/Logit » Random Forests

v

Deep learning (autoencoders)
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What is classification?

» Modeling of dependent variable in a discrete class

» Include binary dependent variable models:

yi € {spam, not spam}

y;i € {poor, not poor}
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What is classification?

v

Modeling of dependent variable in a discrete class

» Include binary dependent variable models:
yi € {spam, not spam}
y;i € {poor, not poor}
» As well as multinomial dependent variable models

yi € {brown, black, blonde, red}

v

Often we are more interested in , rather than
classifying objects themselves

[ELTIRTTTRTTTEIT E TRE]
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Example: credit card default
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FIGURE 4.1. The Default data set. Left: The annual incomes and monthly
credit card balances of a number of individuals. The individuals who defaulted on
their credit card payments are shown in orange, and those who did not are shown
in blue. Center: Bozplots of balance as a function of default status. Right:

Bozplots of income as a function of default status. MTIIIIIINOOI T TR
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Simple Classification

Can we use linear regression?

» For the default classification task

Y — 0 if No default
"1 if Yes default

» Can we just linearly regress X on Y7 = classify as Yes if y > 0.57
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Simple Classification

Can we use linear regression?

For the default classification task

v

Y — 0 if No default
"1 if Yes default

» Can we just linearly regress X on Y7 = classify as Yes if y > 0.57

» In many cases, yes, as E[Y [X =x] = Pr(Y =1|X =x)

However, this might produce y ¢ [0, 1], which may be a problem for
prediction =

v
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Logistic regression

> Logistic regression uses a logit transform to ensure predicted values
are always between 0 and 1.
gBo+B1X
p(X) = 1+ e tBiX
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Making predictions

» What is our estimated probability of default for someone with a
balance of $1000?

ePot+BiX —10.6513+0.0055+1000
p(X) = 1+ ePothix ~ 1+ ¢ 10.651310.0055+1000 0.006
[ELTIRTTTRTTTEIT E TRE]
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Making predictions

» What is our estimated probability of default for someone with a
balance of $1000?

ePot+BiX —10.6513+0.0055+1000
p(X) = 1+ ePothix ~ 1+ ¢ 10.651310.0055+1000 0.006
» with a balance of $2000?
ePot+BiX —10.6513+0.0055+2000
p(X) = 1+ ePothix ~ 1+ ¢ 10.651310.0055+2000 0.586
[T TIFETTELITEIT E FRE]
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Where this can go wrong

» It turns out, for many variables, estimation via maximum
likelihood breaks down

LI CIFETTRLITEIT TR
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Simple Classification

Where this can go wrong

» It turns out, for many variables, estimation via maximum
likelihood breaks down

» To see this, note that we estimate (that is, choose (3s) via maximum

likelihood
£(Bo, B H p(x) IT (1= p((x))

iryi= ityi=0
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Simple Classification

Where this can go wrong

» It turns out, for many variables, estimation via maximum
likelihood breaks down

» To see this, note that we estimate (that is, choose (3s) via maximum

likelihood
(B, B H p(x) TI @—p((x))

ityi= ity;=0
» Our likelihood often becomes non-concave, and can’t estimate
coefficients with precision

[ELTIRTTTRTTTEIT E TRE]
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Regularized logistic

N K
ﬂLogitLasso = argﬁmin Z Yj ()STﬁ) —In (1 + exp ()STB)) + )‘Z |ﬁj‘
) i—1
’ Logistic LLH \J‘,_.z
regularization

» Performs very well given large number of variables

» Cross-validation ensures model doesn’t overfit

[ELTIRTTTRTTTEIT E TRE]
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Classification Diagnostics|
Plan

@ [Classification Diagnostics|
@ [Confusion Matri
o [ROC Curves
o [Lift Charts
o [Severe Class Imbalancel

[Conclusion]
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Confusion Matrix

Observed
False (Y = 0) True (Y =1)
False (Y=0) | True Negative (TN) False Negative (FN)
True (Y=1) False Positive (FN)  True Positive (TP)

Predicted

[ELTIRTTTRTTTEIT E TRE]

J.Hersh (Chapman U) Classification February 27, 2018 15 / 32



Confusion Matrix

Observed
False (Y = 0) True (Y =1)
False (Y=0) | True Negative (TN) False Negative (FN)
True (Y=1) False Positive (FN)  True Positive (TP)

Predicted

Diagonals (good job)
» TN: Predicted false, true false

» TP: Predicted true, observed true
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Confusion Matrix

Observed
False (Y = 0) True (Y =1)
False (Y=0) | True Negative (TN) False Negative (FN)
True (Y=1) False Positive (FN)  True Positive (TP)

Predicted

Diagonals (good job)
» TN: Predicted false, true false
» TP: Predicted true, observed true
Off-diagonals (bad job)
» FP: Predicted true, observed false (Type | Error)
» FN: Predicted false, observed true (Type Il Error)

[ELTIRTTTRTTTEIT E TRE]
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Example confusion matrix with default data

Predicted
default status

True default status

No Yes
No | 9,644 252 9,896
Yes 23 81 104
9,667 333 10,000

» Accuracy: “How often is the classifier correct?”
(TP + TN)/ Total = (9,644 + 81)/10,000 = 97.25
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Example confusion matrix with default data

v

v

v

v

Predicted
default status

True default status

No Yes
No | 9,644 252 9,896
Yes 23 81 104
9,667 333 10,000

Accuracy: “How often is the classifier correct?”
(TP + TN)/ Total = (9,644 + 81)/10,000 = 97.25

Mis-classification rate: “How often is the classifier wrong?”
(FP + FN)/ Total = (23 4 252)/10,000 = 2.75

Note if we classified everything to No, we would make 333/1000
errors, only 3.33% error rate !

Our classifier seems unbalanced:

Of the true No's: 23/9667 = 0.2% errors!
Of the true Yes's: 252/333 = 75.7%

errruis_l_ll T T T et o



Tradeoff between FP and FN

» Think of two medical tests:

1. One that often flags a disease (at the expense of flagging many
healthy patients)

2. One that seldom flags a disease (at the expense of not flagging
many sick patients)

LI CIFETTRIITEIT F TR
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Tradeoff between FP and FN

» Think of two medical tests:

1. One that often flags a disease (at the expense of flagging many
healthy patients)

2. One that seldom flags a disease (at the expense of not flagging
many sick patients)

» In ML, we stay that test 1 has a high sensitivity, low specificity
» and test 2 has a low sensitivity, high specificity

Specificity “Proportion of negatives correctly identified”
Sensitivity: “Proportion of positives correctly identified”

[ELTIRTTTRTTTEIT E TRE]
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Classification Diagnostics|

Specificity and Sensitivity Tradeoff

Threshold A
True True
Not Poor Poor
- +
pr(poor)

LI CIFETTRLITEIT F TR
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Specificity and Sensitivity Tradeoff

Threshold A
True True
Not Poor Poor

pr(poor)

» Threshold A is highly sensitive — high TPR I TIITTTITTIFIT E_CIL]

J.Hersh (Chapman U) Classification February 27, 2018 19 / 32



Specificity and Sensitivity Tradeoff

Threshold B

True True
Not Poor Poor

pr(poor)

» Threshold B has high specificity — high TNRTITIFITTICTTET F I
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Varying the threshold
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ROC Curve
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Fig. 11.6: A receiver operator characteristic (ROC) curve for the logistic
regression model results for the credit model. The dot indicates the value
corresponding to a cutoff of 50% while the green square corresponds to a
cutoff of 30% (i.e., probabilities greater than 0.30 are called events)

» AUC: “Area under the curve”

» AUC: 1 = perfect accuracy; Diagonal I'WWWW



Lift Chart

» Lift charts are a visualization tool for assessing accuracy in
binary models

» It shows best and worst models (perfect accuracy and random
chance), showing how a given model performs relative to these two

[ELTIRTTTRTTTEIT E TRE]
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Lift Chart

» Lift charts are a visualization tool for assessing accuracy in
binary models

» It shows best and worst models (perfect accuracy and random
chance), showing how a given model performs relative to these two

» To construct a lift charge, use any method to get predicted
probabilities p;, then order observations by these p;.
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Lift Chart

v

Lift charts are a visualization tool for assessing accuracy in
binary models

v

It shows best and worst models (perfect accuracy and random
chance), showing how a given model performs relative to these two

» To construct a lift charge, use any method to get predicted
probabilities p;, then order observations by these p;.

v

For each p; count whether the observation event occurred

\4

Calculate counterfactual perfect and random model accuracy

[ELTIRTTTRTTTEIT E TRE]
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Lift Chart
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Fig. 11.7: An example lift plot with two models: one that perfectly separates
two classes and another that is completely non-informative
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Lift Chart example

100 H

80

[+2]
o
1

S
o
1

%Events Found

20

T T T T T T

0 20 40 60 80 100
%Customers Evaluated

Fig. 16.1: Top: Evaluation set ROC curves for each of the three baseline
models. Bottom: The corresponding lift plots
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Severe Class Imbalance

» Severe class imbalance occurs when one class is vastly

overrepresented

» The log-likelihood is maximized by settings coefficients to
predict well the majority class, and poorly predict the minority
class.

[ELTIRTTTRTTTEIT E TRE]
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Severe Class Imbalance

» Severe class imbalance occurs when one class is vastly
overrepresented

» The log-likelihood is maximized by settings coefficients to
predict well the majority class, and poorly predict the minority
class.

Table 16.1: Results for three predictive models using the evaluation set

Model Accuracy Kappa Sensitivity Specificity ROC AUC
Random forest 93.5 0.091 6.78 99.0 0.757
FDA (MARS) 93.8 0.024 1.69 99.7 0.754
Logistic regression 93.9 0.027 1.69 99.8 0.727
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Severe Class Imbalance

» Severe class imbalance occurs when one class is vastly
overrepresented

» The log-likelihood is maximized by settings coefficients to
predict well the majority class, and poorly predict the minority
class.

Table 16.1: Results for three predictive models using the evaluation set

Model Accuracy Kappa Sensitivity Specificity ROC AUC
Random forest 93.5 0.091 6.78 99.0 0.757
FDA (MARS) 93.8 0.024 1.69 99.7 0.754
Logistic regression 93.9 0.027 1.69 99.8 0.727

» Fancier methods: random forest, neural networks, even deep learning

will not solve this
CEMTI T T E TR
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Remedy 1: alternative p cutoff
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Fig. 16.2: The random forest ROC curve for predicting the classes using the
evaluation set. The number on the left represents the probability cutoff, and
the numbers in the parentheses are the specificity and sensitivity, respec-
tively. Several possible probability cutoffs are used, including the threshold

geometrically closest to the perfect model (0.064) T-I 11 T3 FI8IRE] E 1FFF



Classification Diagnostics|

Remedies 2 & 3: undersampling majority class,
SMOTE
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Fig. 16.3: From left to right: The original simulated data set and realizations of
a down-sampled version, an up-sampled version, and sampling using SMOTE
where the cases are sampled and/or imputed

» SMOTE: uses interpolation to create new minority classes
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Calibration plot to check predictions
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» Calibration plot: bin p by deciles, and plot against observed event
frequencies. M IAFFATHIAEA E IFERE
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Calibration plot to check predictions

Probability of Bad Credit
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Fig. 11.3: Top: Histograms for a set of probabilities associated with bad credit.
The two panels split the customers by their true class. Bottom: A calibration
plot for these probabilities
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Conclusion

Conclusion

» Use confusion matrices to compare predictive performance

» Lift charts present model performance against useful bar of random or
perfect assignment
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Conclusion

Conclusion
» Use confusion matrices to compare predictive performance
» Lift charts present model performance against useful bar of random or
perfect assignment
» Severe class imbalance cannot be solved through fancier methods —
must use brain
» Calibration plots help model diagnostic

[ELTISTTTRTTTEIT E TRE]
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