Classification

Jonathan Hersh1

Chapman University, Argyros School of Business

hersh@chapman.edu

February 27, 2018
How do ML engineers use classification?

- Image classification

![Image classification process diagram]
How do ML engineers use classification?

- Image classification
- Speech recognition
How do ML engineers use classification?

- Image classification
- Speech recognition
- Fraud detection
How do ML engineers use classification?

- Image classification
- Speech recognition
- Fraud detection
- Spam detection
How do ML engineers use classification?

- Image classification
- Speech recognition
- Fraud detection
- Spam detection
- Advertising
1. **Simple Classification**
 - Introduction
 - Logistic regression
 - Regularized logistic

2. **Classification Diagnostics**
 - Confusion Matrices
 - ROC Curves
 - Lift Charts
 - Severe Class Imbalance

3. **Conclusion**
Source material

- ISLR Chapter 4; APM Chapters 11, 12 & 16
Plan

1. Simple Classification
 - Introduction
 - Logistic regression
 - Regularized logistic

2. Classification Diagnostics
 - Confusion Matrices
 - ROC Curves
 - Lift Charts
 - Severe Class Imbalance

3. Conclusion
Machine Learning Classification Methods

Linear Classification Methods

- Linear Regression
- Probit
- Logit
- Linear Discriminant Analysis
- Regularized Probit/Logit
Machine Learning Classification Methods

Linear Classification Methods
- Linear Regression
- Probit
- Logit
- Linear Discriminant Analysis
- Regularized Probit/Logit

Nonlinear Methods
- Neural Networks
- Support Vector Machines (SVM)
- K-Nearest Neighbors (k-NN)
- Regression Trees
- Random Forests
- Deep learning (autoencoders)
What is classification?

- Modeling of dependent variable in a discrete class
- Include binary dependent variable models:
 \[y_i \in \{ \text{spam, not spam} \} \]
 \[y_i \in \{ \text{poor, not poor} \} \]
What is classification?

- Modeling of dependent variable in a discrete class
- Include binary dependent variable models:
 \[y_i \in \{ \text{spam, not spam} \} \]
 \[y_i \in \{ \text{poor, not poor} \} \]
- As well as multinomial dependent variable models
 \[y_i \in \{ \text{brown, black, blonde, red} \} \]
What is classification?

- Modeling of dependent variable in a discrete class
- Include binary dependent variable models:
 \[y_i \in \{ \text{spam, not spam} \} \]
 \[y_i \in \{ \text{poor, not poor} \} \]
- As well as multinomial dependent variable models
 \[y_i \in \{ \text{brown, black, blonde, red} \} \]
- Often we are more interested in **class probabilities**, rather than classifying objects themselves
Example: credit card default

FIGURE 4.1. The Default data set. Left: The annual incomes and monthly credit card balances of a number of individuals. The individuals who defaulted on their credit card payments are shown in orange, and those who did not are shown in blue. Center: Boxplots of balance as a function of default status. Right: Boxplots of income as a function of default status.
Can we use linear regression?

- For the default classification task

\[Y = \begin{cases}
0 & \text{if No default} \\
1 & \text{if Yes default}
\end{cases} \]

- Can we just linearly regress \(X \) on \(Y \)? \(\Rightarrow \) classify as Yes if \(\hat{y} > 0.5 \)?
Can we use linear regression?

- For the default classification task
 \[
 Y = \begin{cases}
 0 & \text{if No default} \\
 1 & \text{if Yes default}
 \end{cases}
 \]

- Can we just linearly regress \(X \) on \(Y \)? \(\Rightarrow \) classify as \textbf{Yes} if \(\hat{y} > 0.5 \)?

- In many cases, yes, as \(\mathbb{E}[Y | X = x] = Pr(Y = 1 | X = x) \)

- However, this might produce \(\hat{y} \notin [0,1] \), which may be a problem for prediction \(\Rightarrow \) \textbf{Logistic regression}
Logistic regression

- Logistic regression uses a logit transform to ensure predicted values are always between 0 and 1.

\[
p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_1 + \beta_1 X}}
\]
Making predictions

What is our estimated probability of default for someone with a balance of $1000?

\[
p(X) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 X}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 X}} = \frac{e^{-10.6513 + 0.0055\times1000}}{1 + e^{-10.6513 + 0.0055\times1000}} = 0.006
\]
Making predictions

- What is our estimated probability of default for someone with a balance of $1000?

\[
p(X) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 X}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 X}} = \frac{e^{-10.6513 + 0.0055 \times 1000}}{1 + e^{-10.6513 + 0.0055 \times 1000}} = 0.006
\]

- with a balance of $2000?

\[
p(X) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 X}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 X}} = \frac{e^{-10.6513 + 0.0055 \times 2000}}{1 + e^{-10.6513 + 0.0055 \times 2000}} = 0.586
\]
Where this can go wrong

- It turns out, for many variables, estimation via maximum likelihood breaks down
Where this can go wrong

- It turns out, for many variables, estimation via maximum likelihood breaks down.

- To see this, note that we estimate (that is, choose βs) via maximum likelihood

$$
\ell(\beta_0, \beta) = \prod_{i: y_i=1} p(x_i) \prod_{i: y_i=0} (1 - p((x_i))
$$
Where this can go wrong

- It turns out, for many variables, estimation via maximum likelihood breaks down

- To see this, note that we estimate (that is, choose βs) via maximum likelihood

$$
\ell (\beta_0, \beta) = \prod_{i:y_i=1} p(x_i) \prod_{i:y_i=0} (1 - p((x_i))
$$

- Our likelihood often becomes non-concave, and can’t estimate coefficients with precision
Regularized logistic

\[\beta_{\text{LogitLasso}} = \arg\min_{\beta} \sum_{j=1}^{N} \left\{ y_j (X_j^T \beta) - \ln \left(1 + \exp \left(X_j^T \beta \right) \right) + \lambda \sum_{j=1}^{K} |\beta_j| \right\} \]

- Performs very well given large number of variables
- **Cross-validation ensures model doesn’t overfit**
Plan

1. Simple Classification
 - Introduction
 - Logistic regression
 - Regularized logistic

2. Classification Diagnostics
 - Confusion Matrices
 - ROC Curves
 - Lift Charts
 - Severe Class Imbalance

3. Conclusion
Confusion Matrix

<table>
<thead>
<tr>
<th>Predicted</th>
<th>False (Y=0)</th>
<th>True (Y=1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>False (Y=0)</td>
<td>True Negative (TN)</td>
<td>False Positive (FN)</td>
</tr>
<tr>
<td>True (Y=1)</td>
<td>False Negative (FN)</td>
<td>True Positive (TP)</td>
</tr>
</tbody>
</table>

Observed

- False (Y = 0)
- True (Y = 1)
Confusion Matrix

<table>
<thead>
<tr>
<th>Predicted</th>
<th>False (Y=0)</th>
<th>True (Y=1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>False (Y=0)</td>
<td>True Negative (TN)</td>
<td>False Negative (FN)</td>
</tr>
<tr>
<td>True (Y=1)</td>
<td>False Positive (FP)</td>
<td>True Positive (TP)</td>
</tr>
</tbody>
</table>

Diagonals (good job)

- TN: Predicted false, true false
- TP: Predicted true, observed true
Confusion Matrix

<table>
<thead>
<tr>
<th>Predicted</th>
<th>False (Y = 0)</th>
<th>True (Y = 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>False (Y = 0)</td>
<td>True Negative (TN)</td>
<td>False Negative (FN)</td>
</tr>
<tr>
<td>True (Y = 1)</td>
<td>False Positive (FP)</td>
<td>True Positive (TP)</td>
</tr>
</tbody>
</table>

Diagonals (good job)
- **TN**: Predicted false, true false
- **TP**: Predicted true, observed true

Off-diagonals (bad job)
- **FP**: Predicted true, observed false (Type I Error)
- **FN**: Predicted false, observed true (Type II Error)
Example confusion matrix with default data

<table>
<thead>
<tr>
<th></th>
<th>True default status</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predicted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>9,644</td>
<td>252</td>
<td>9,896</td>
</tr>
<tr>
<td>default status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>23</td>
<td>81</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>9,667</td>
<td>333</td>
<td>10,000</td>
</tr>
</tbody>
</table>

▶ **Accuracy:** “How often is the classifier correct?”

\[
\frac{TP + TN}{Total} = \frac{9,644 + 81}{10,000} = 97.25
\]

▶ **Note** if we classified everything to No, we would make 333/1000 errors, only 3.33% error rate!

▶ **Our classifier seems unbalanced:**

▼ Of the true No’s: 23/9667 = 0.2% errors!

▼ Of the true Yes’s: 252/333 = 75.7% errors!
Example confusion matrix with default data

<table>
<thead>
<tr>
<th>True default status</th>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted default status</td>
<td>9,644</td>
<td>252</td>
</tr>
<tr>
<td>No</td>
<td>23</td>
<td>81</td>
</tr>
<tr>
<td>Yes</td>
<td>9,667</td>
<td>333</td>
</tr>
</tbody>
</table>

- **Accuracy**: “How often is the classifier correct?”
\[
\frac{TP + TN}{Total} = \frac{9,644 + 81}{10,000} = 97.25
\]

- **Mis-classification rate**: “How often is the classifier wrong?”
\[
\frac{FP + FN}{Total} = \frac{23 + 252}{10,000} = 2.75
\]
Example confusion matrix with default data

<table>
<thead>
<tr>
<th>Predicted default status</th>
<th>True default status</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>9,644</td>
</tr>
<tr>
<td>Yes</td>
<td>23</td>
</tr>
</tbody>
</table>

\[(TP + TN)/Total = (9,644 + 81)/10,000 = 97.25 \]

\[(FP + FN)/Total = (23 + 252)/10,000 = 2.75 \]

Note if we classified everything to No, we would make 333/1000 errors, only 3.33% error rate!
Example confusion matrix with default data

<table>
<thead>
<tr>
<th>True default status</th>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>9,644</td>
<td>252</td>
</tr>
<tr>
<td>Yes</td>
<td>23</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>9,667</td>
<td>333</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>9,896</td>
</tr>
<tr>
<td>Yes</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>10,000</td>
</tr>
</tbody>
</table>

- **Accuracy**: “How often is the classifier correct?”
 \[
 \frac{TP + TN}{Total} = \frac{9,644 + 81}{10,000} = 97.25
 \]

- **Mis-classification rate**: “How often is the classifier wrong?”
 \[
 \frac{FP + FN}{Total} = \frac{23 + 252}{10,000} = 2.75
 \]

- Note if we classified everything to **No**, we would make 333/1000 errors, only 3.33% error rate!

- Our classifier seems unbalanced:
 - Of the true **No**’s: 23/9667 = 0.2% errors!
 - Of the true **Yes**’s: 252/333 = 75.7% errors!
Tradeoff between FP and FN

- Think of two medical tests:
 1. **One that often flags a disease** (at the expense of flagging many healthy patients)
 2. **One that seldom flags a disease** (at the expense of not flagging many sick patients)
Tradeoff between FP and FN

Think of two medical tests:

1. **One that often flags a disease** (at the expense of flagging many healthy patients)
2. **One that seldom flags a disease** (at the expense of not flagging many sick patients)

In ML, we stay that test 1 has a high sensitivity, low specificity and test 2 has a low sensitivity, high specificity

- Specificity “Proportion of negatives correctly identified”
- Sensitivity: “Proportion of positives correctly identified”
Specificity and Sensitivity Tradeoff

Threshold A

True Not Poor

True Poor

pr(poor)
Specificity and Sensitivity Tradeoff

- Threshold A is highly sensitive – high TPR
Specificity and Sensitivity Tradeoff

- Threshold B has high specificity – high TNR.
Varying the threshold

![Graph showing varying threshold](image)

- **Error Rate**
- **Threshold**

Legend:
- Black: Overall Error
- Orange: False Positive
- Blue: False Negative
ROC Curve

Fig. 11.6: A receiver operator characteristic (ROC) curve for the logistic regression model results for the credit model. The dot indicates the value corresponding to a cutoff of 50% while the green square corresponds to a cutoff of 30% (i.e., probabilities greater than 0.30 are called events)

- **AUC**: “Area under the curve”
- **AUC**: 1 = perfect accuracy; **Diagonal line**: no better than chance
Lift Chart

- Lift charts are a visualization tool for assessing accuracy in binary models.
- It shows **best and worst models** (perfect accuracy and random chance), showing how a given model performs relative to these two.
Lift Chart

- Lift charts are a visualization tool for assessing accuracy in binary models.
- It shows **best and worst models** (perfect accuracy and random chance), showing how a given model performs relative to these two.
- To construct a lift charge, use any method to get predicted probabilities \(\hat{p}_i \), then order observations by these \(\hat{p}_i \).
Lift Chart

- Lift charts are a visualization tool for assessing accuracy in binary models.
- It shows best and worst models (perfect accuracy and random chance), showing how a given model performs relative to these two.
- To construct a lift charge, use any method to get predicted probabilities \hat{p}_i, then order observations by these \hat{p}_i.
- For each \hat{p}_i count whether the observation event occurred.
- Calculate counterfactual perfect and random model accuracy.
Lift Chart

Fig. 11.7: An example lift plot with two models: one that perfectly separates two classes and another that is completely non-informative.
Lift Chart example

Fig. 16.1: Top: Evaluation set ROC curves for each of the three baseline models. Bottom: The corresponding lift plots.
Severe Class Imbalance

- **Severe class imbalance** occurs when one class is vastly overrepresented.
- The log-likelihood is maximized by setting coefficients to predict well the majority class, and poorly predict the minority class.
Severe Class Imbalance

- **Severe class imbalance** occurs when one class is vastly overrepresented.

- The log-likelihood is maximized by setting coefficients to predict well the majority class, and poorly predict the minority class.

Table 16.1: Results for three predictive models using the evaluation set

<table>
<thead>
<tr>
<th>Model</th>
<th>Accuracy</th>
<th>Kappa</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>ROC</th>
<th>AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random forest</td>
<td>93.5</td>
<td>0.091</td>
<td>6.78</td>
<td>99.0</td>
<td>0.757</td>
<td></td>
</tr>
<tr>
<td>FDA (MARS)</td>
<td>93.8</td>
<td>0.024</td>
<td>1.69</td>
<td>99.7</td>
<td>0.754</td>
<td></td>
</tr>
<tr>
<td>Logistic regression</td>
<td>93.9</td>
<td>0.027</td>
<td>1.69</td>
<td>99.8</td>
<td>0.727</td>
<td></td>
</tr>
</tbody>
</table>
Severe Class Imbalance

- **Severe class imbalance** occurs when one class is vastly overrepresented.

- The log-likelihood is maximized by settings coefficients to predict well the majority class, and poorly predict the minority class.

Table 16.1: Results for three predictive models using the evaluation set

<table>
<thead>
<tr>
<th>Model</th>
<th>Accuracy</th>
<th>Kappa</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>ROC</th>
<th>AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random forest</td>
<td>93.5</td>
<td>0.091</td>
<td>6.78</td>
<td>99.0</td>
<td>0.757</td>
<td></td>
</tr>
<tr>
<td>FDA (MARS)</td>
<td>93.8</td>
<td>0.024</td>
<td>1.69</td>
<td>99.7</td>
<td>0.754</td>
<td></td>
</tr>
<tr>
<td>Logistic regression</td>
<td>93.9</td>
<td>0.027</td>
<td>1.69</td>
<td>99.8</td>
<td>0.727</td>
<td></td>
</tr>
</tbody>
</table>

- Fancier methods: random forest, neural networks, even deep learning will not solve this.
Remedy 1: alternative \hat{p} cutoff

Fig. 16.2: The random forest ROC curve for predicting the classes using the evaluation set. The number on the left represents the probability cutoff, and the numbers in the parentheses are the specificity and sensitivity, respectively. Several possible probability cutoffs are used, including the threshold geometrically closest to the perfect model (0.064).
Remedies 2 & 3: undersampling majority class, SMOTE

Fig. 16.3: From left to right: The original simulated data set and realizations of a down-sampled version, an up-sampled version, and sampling using SMOTE where the cases are sampled and/or imputed

- **SMOTE**: uses interpolation to create new minority classes
Calibration plot to check predictions

- **Calibration plot**: bin \hat{p} by deciles, and plot against observed event frequencies.
Calibration plot to check predictions

Fig. 11.3: *Top:* Histograms for a set of probabilities associated with bad credit. The two panels split the customers by their true class. *Bottom:* A calibration plot for these probabilities
Plan

1. Simple Classification
 - Introduction
 - Logistic regression
 - Regularized logistic

2. Classification Diagnostics
 - Confusion Matrices
 - ROC Curves
 - Lift Charts
 - Severe Class Imbalance

3. Conclusion
Conclusion

- Use confusion matrices to compare predictive performance
- Lift charts present model performance against useful bar of random or perfect assignment
Conclusion

- Use confusion matrices to compare predictive performance
- Lift charts present model performance against useful bar of random or perfect assignment
- Severe class imbalance cannot be solved through fancier methods → must use brain
- Calibration plots help model diagnostic