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* Introduction

* Clustering
* K-means clustering
* Heirarchical clustering

* Principal Component Analysis
(PCA)



 All of the machine learning we’ve
encountered so far has been

supervised learning such as
regression

* This last lecture will describe
unsupervised learning

* In unsupervised learning, we
observe x4, x;, X, features but we
don’t observe any Ys



Goals of unsupervised learning

* Since we don’t observe Y's, we can’t predict
anything

Supervised Learning

Unsupervised Learning

* The goal is more subtle here: can we discover
interesting patterns in the data? Can we
discover useful subgroups?

« We’'ll discuss two methods

* clustering: a broad class of methods for
discovering unknown subgroups

 principal component analysis: a tool used
for data visualization and dimension
reduction




* Because we have no “truth”, the end result is
more subjective

* Some examples of unsupervised learning

* subgroup of breast cancer patients that by
gene expression are drug resistant

» groups of shoppers characterized by
browsing and purchase histories

* movies grouped by ratings assigned by
movie viewers



K-means clustering as a “game”

Partitioning Clustering Plot
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* The computer splits the objects g 0-
into k groups such that the groups
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K-means clustering algorithm

1. Decide how many clusters we want. Partiioning Clustering Plot
Call this K N

2. Randomly assigh a number, 1, ... ,K,
to each of the observations. (Initial St
cluster assignment)

3. Iterate until clusters stop changing:
* Expectation-step: For each of the K

Dim2 (24.7%)

clusters, compute the cluster centroid New Jersey—— N_7% 3fhoce Isand
(center point, i.e. means for the k-th 2 N 5
cluster

) cluster 1 2 34

* Maximization-step: Assign each
observation to the cluster whose centroid
is closest (in Euclidean distance)



K-means clustering in action

Iteration O: Initialize centroids
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* From: http://util.io/k-means



http://util.io/k-means

K-means clustering in action

Iteration 1: E-Step
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Iteration 1: M-Step

K-means clustering in action
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http://util.io/k-means

Iteration 2: E-Step

K-means clustering in action
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* From: http://util.io/k-means
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Iteration 2: M-Step

K-means clustering in action
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Iteration 3: E-Step

K-means clustering in action
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Iteration 3: M-Step

K-means clustering in action
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* From: http://util.io/k-means
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Iteration 4: E-Step

K-means clustering in action
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* From: http://util.io/k-means
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Examples of clustering: Customer Segmentation

Low education,
Low income

Low-moderate
income, young

High

High High income,
? Low-moderate education

Moderate-high education,
Low-moderate income

— High

- Moderate education,
Low income, middle aged
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Examples of clustering: Clustering Wide Receivers

Using k-means clustering to find similar players
Wed 23 September 2015

Most of the posts so far have focused on what data scientists call supervised methods -- you have some outcome you're trying to
predict and you use a combination of predictor variables to do so. Another important class of methods are called unsupervised. In
this case, you might not know what exactly you're looking for or what metric you want to optimize for, but you want to explore the
data and identify similarities among cases. For example, you might want to identify a list of "similar" players for your fantasy draft.
This is a little late for the start of fantasy season, but with the rise of daily fantasy sports, perhaps not. However, maybe you don't

know what "similar" means in this case or you don't have a single number or index that you want to match on. Perhaps you just
want to find players with similar production to hedge against bye weeks or injuries.

This is where unsupervised methods come in. We'll be focusing on a popular unsupervised method called clustering. You'll see
these kinds of methods used on a number of sports sites. Boris Chen, a data scientist at the New York Times, uses a kind of
clustering to produce his fantasy football player tiers. Krishna Narsu recently used a kind of clustering to redefine the defensive
positions in the NBA.

One popular method is called k-means clustering. (Note, this isn't the same k as in k-fold cross-validation, kis just a common stand-
in for an unknown integer value.) I'll be working through an example clustering wide receivers using their 2013 statistics. K-means
is really beautifully simple. The basic idea is that we want to take our entire data set and divide the observations into k sections and
have each of the observations be as similar to each other as possible (and potentially as dissimilar to every other cluster as
possible). Each cluster has what's known as a 'center’ or "centroid’, which is the point against which all of the observations in that
cluster are compared. You can think of it as the "ideal" or "prototypical" observation that typifies each cluster.

EDIT: As always, code for this example is up on GitHub.

* From: http://thespread.us/clustering.html



http://thespread.us/clustering.html

Examples of clustering: Clustering Wide Receivers

Player cluster

A.Hawkins

Cluster Targets Receptions Yards TDs Fumbles Fantasy Points
0 -0.84 -0.82 -0.81 -0.72 -0.4 -0.82

1 0.49 0.47 0.43 0.41 -0.38 0.45
C.Johnson
2 1.74 1.82 1.9 172 0.47 1.93 E.Bennett

3 0.21 0.12 0.08 -0.07 2.46 0.01 E.Weems
J.Boyce

A.Robinson

B.Golden

J.Criner
J.Ebert
K.Allen
K.Martin
L.Brazill
L.Hankerson
L.Moore
R.Shepard
R.Shepard
R.Woods
R.Woods
S.Smith

* From: http://thespread.us/clustering.html V.Jackson
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http://thespread.us/clustering.html

Begin with n observations and calculate all of
the pairwise dissimilarities. Treat each
observation as its own cluster

Fori=nn-1,...,2:
* Examine all pairwise inter-cluster dissimilarities
among the i clusters and identify the clusters that are

most similar. Fuse these two clusters.

 Compute the new pairwise inter-cluster dissimilarities
among the i — 1 remaining clusters



Hierarchical clustering in action

20



Hierarchical clustering in action

.....




Hierarchical clustering in action

.
.
......
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Hierarchical clustering in action
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Connection to “dendrograms”

Dendrogram
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library('ISLR")
library(' factoextra')
library('cluster')

data("USArrests")

kmeans3 <- kmeans(USArrests, centers
str(kmeans3)
kmeans3

3, nstart = 25)
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K-means clustering with 3 clusters of sizes 14, 20, 16

Cluster means:

Murder Assault UrbanPop Rape
1 8.214286 173.2857 70.64286 22.84286
2 4.270000 87.5500 59.75000 14.39000
3 11.812500 272.5625 68.31250 28.37500

Within cluster sum of squares by cluster:
[1] 9136.643 19263.760 19563.863
(between_SS / total_SS = 86.5 %)
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K=3 means clustering
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fviz_cluster(kmeans3, data = USArrests, main = "K=3 means clustering")
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K=5 means clustering
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kmeans5 <- kmeans(USArrests, centers = 5, nstart = 25)

fviz_cluster(kmeans5, data = USArrests, main = "K=5 means clustering")
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How to pick k? “Elbow Method”

* Plot explained variance by # of clusters
* Look for the “bend” in the plot

wss <- function(k){

kmeans(USArrests, k, nstart = 25)$tot.withinss
}

wss_values <- map_dbl(1:15, wss)|

plot(1:15, wss_values,
type = "b", pch = 19, frame = FALSE,
xlab = "Number of clusters K",
ylab = "Total within-cluster sum of squares™)
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Within-cluster sum of squares by # of clusters

Total within-cluster sum of squares
100000 200000 300000
|

0
I

Number of clusters K
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Silhouette score:

* a; = measure of dissimilarity between point i
and other observations in its cluster.
e 1 =good match with cluster
e -1 =really bad match

* b; = measure of dissimilarity between i and
all other points in any cluster
bi—a;

(] S. p—
" max{a;b;}



Silhouette Score

layout (matrix(c(1, 2), 1, 2)) # 2 graphs per page
plot(pamk.result$pamobject)

clusplot(pam(x = sdata, k = k, diss = d Silhouette plot of pam(x = sd
o n =150 2 clusters C,
E ]:n | ave,q s
o~ | 0.81
Y
£ =
5
(&)
- - 99 | 0.62
§
1 1 1 1 1 1 1 | 1 | I 1 1
-3 -1 0O 1 2 3 4 0.0 02 04 06 08 1.0
Silhouette width s,
Component 1
These two components explain 95.8 Average silhouette width : 0.69

Ay

layout (matrix(1)) # change back to one graph per page 11/30



Silhouette Score

# plot clustering result
layout (matrix(c(1, 2), 1, 2)) # set to two graphs per page
plot(pamResult, col.p = pamResult$clustering)

clusplotipamix = sdata, k = k, diss = diss, metric = “manhattan”)) Sshouette plot of pam(x = sdata, k = k, diss = diss, metric = “manh:
n«320 0 dusnes G,
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N 1:28) 013
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layout (matrix(1)) # change back to one graph per page
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e Suppose we want to visualize n observations
that have p variables, X, ..., X,

* We could examine every two-dimensional sub-
plot

* However, that would be (how many) subplots?
(p) p(P 1)

* How do we V|sualize data to see how “far apart”
certain observations are from one another?



* Sometimes in a regression setting, we care
about controlling for many characteristics, but
don’t care about interpreting those
characteristics.

* We can take those control variables, project
them down into a lower dimensional subspace,
then control for only those lower dimensional

variables

* E.g. take 100 controls variables, project down to
2 dimensions, and only control for those 2
variables



* PCA produces a low-dimensional representation
of a dataset.

* |t does so by finding directions of maximal
variance that are mutually orthogonal

* In other words it asks the question

If I had to pick a set of direction such that if |
projected the data onto those directions, and then
computed the variance of the points, which
directions would maximize explained variance?



* PCA finds sequence of linear combinations of the variables
that maximize variance and are mutually uncorrelated

* The first principal component of a set of features
X1,X3, ..., X is the normalized linear combination of the
features

Z1 = ¢p11X1 + D1 Xy + -+ Pp1 Xy
That have the largest variance

. - p 2 _
Normalized here means ijl @i =1

T
* pq = (¢11¢21 gbpl) is the vector of factor loadings of the
first principal component



First Principal Component
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FIGURE 6.14. The population size (pop) and ad spending (ad) for 100 different
cities are shown as purple circles. The green solid line indicates the first principal
component, and the blue dashed line indicates the second principal component.
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* After we have calculated the first principal component,Z,, the second
principle component is the linear combination of X;, ---, X}, that has

maximal variance out of all linear combinations that are uncorrelated
with Z4

* The second principal component takes the form
Ly = Pp12X1 + P22X5 + -+ P2 Xy
T
¢, = (¢12¢22 gbpz) is the vector of factor loadings of the second
principal component

* Constraining Z, to be uncorrelated with Z; is equivalent to
constraining X; to be orthogonal (perpendicular) to X,



Second Principal Component
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]
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10
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Population 1st Principal Component

FIGURE 6.15. A subset of the advertising data. The mean pop and ad budgets
are indicated with a blue circle. Left: The first principal component direction is
shown in green. It is the dimension along which the data vary the most, and it also
defines the line that is closest to all n of the observations. The distances from each
observation to the principal component are represented using the black dashed line
segments. The blue dot represents (pop,ad). Right: The left-hand panel has been
rotated so that the first principal component direction coincides with the x-axis. 40



Second Principal Component
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FIGURE 6.16. Plots of the first principal component scores z;1 versus pop and
ad. The relationships are strong.
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e USAarrests data: For each 50 state in the US, number of
arrests per 100,000 residents for each of the three
crimes: assault, murder, and rape. Also record UrbanPop.

* Principal component score vectors have a length of n =
50, and loading vectors have length p = 4

* PCA was performed after standardizing variables to have
a mean of 0 and standard deviation of 1.



PCA Illustration

require('ISLR")
dimnames(USArrests)
apply(USArrests,2,mean)
apply(USArrests,2,var)

pca.out <- prcomp(USArrests, scale=TRUE)
pca.out
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> pca.out
Standard deviations (1, .., p=4):
[1] 1.5748783 0.9948694 0.5971291 0.4164494 Factor

loadings

Rotation (n x k) = (4 x 4):

PC1 PC2 PC3 PC4
Murder -0.5358995 0.4181809 -0.3412327 0.64922780
Assault -0.5831836 0.1879856 -0.2681484 -0.74340748
UrbanPop -0.2781909 -0.8728062 -0.3780158 ©.13387773
Rape -0.5434321 -0.1673186 0.8177779 0.08902432




How many PCAs to use? “Elbow Method”
from “Skree” plot

2.0

1.5

Variances
1.0

0.5
|

PCA
I.-—

0.0
L

45



* As promised, we can now use the 15t and 2" principal
component to visualize the P-dimensional data on a 2-
dimensional plot

* This is called “projecting” our data in 2 dimensions

biplot(pca.out)

Library('ggfortify')

autoplot(prcomp(USArrests), data = USArrests,
loadings = TRUE, loadings.colour = 'blue’,
loadings.label = TRUE, loadings.label.size = 5,
label = TRUE) + theme_bw()

46



PCA “Biplot”
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