
Tree Based Methods
(Chapter 8 in ISLR)

Belize Machine Learning Training
Jonathan Hersh (Chapman Univesity)

1

Regression Trees
• Tree based methods stratify or

segment the predictor space into
different regions
• Regions are stratified via simple

rules
• The splitting rules can be

summarized into a tree that is very
intuitive

2

Pros and Cons of Trees
Pros
• Simple
• Easy to interpret
• Easy to explain
• Can be displayed

graphically!
• Bagging, boosting, and

random forests very
powerful (combining trees)

3

Cons
• Slow with large datasets
• Not easy to use “out of the

box”
• Choice of split can be

unstable

Decision/Regression Trees
• Decision trees can be applied to

both regression problems (!" ∈ $)
and classification problems !" ∈
{'()**1, '()**2, … , }
• We’ll consider both

4

Baseball salary data: how to partition/stratify?

5

Baseball salary data: how to partition/stratify?

6

Baseball salary data: how to partition/stratify?

7

• Only linear
classification
rules are allowed,
e.g. year > 10

Baseball salary data: split 1

8

• Split 1: years > 4.5

Baseball salary data: split 2

9

• Split 1: years > 4.5

• Split 2: hits > 117.5

Tree Representation

10

• Trees are read top-
down

• Most important
split is at top

• Length represents
how much within-
cluster variance
decreases from
split

Tree Representation

11

Tree Representation

12

• At the end of
the tree are
“leafs”

• For regression,
avg value of
observations in
leaf => !" for
observation

Details of tree building algorithm
• Computationally infeasible to consider all combinations of splits

• Instead, use a top-down, greedy approach called recursive
binary splitting
• Greedy here means at each step, we only consider the best split,

without caring how it affects successive nodes
• “top down” because we start with the best split and proceed

downward (no backing up)

13

Pruning trees

14

• How do we know when to stop splitting
the data?
• Trees with many splits can overfit the

data
• Solution is to grow a large tree !", then

prune it to obtain a smaller sub-tree

Decision tree algorithm (8.1 in ISLR)

15

1. Use recursive binary splitting to grow a large tree on the
training data

2. Apply pruning to large tree to obtain sequence of subtrees,
!", !#

3. Use k-fold cross validation to find $!. For each k = 1, . . . ,K :
1. Repeat steps 1 and 2 on all but the k-th fold of training data
2. Evaluate mean squared prediction error on data in left-out k-th fold
3. Average the results for each value of !. Choose the value of !

that minimizes error !
4. Return the subtree that minimizes cross-validated error

Baseball example, unpruned tree

16

Cross-validate to find alpha

17

Cross-validate to find alpha

18

Carseats dataset in ISLR

19

tree() function in package “tree” to build
regression tree

20

Estimate a tree model to predict carseat sales

21

Estimate a tree model to predict carseat sales

22

Plot tree

23

Plot tree

24

Example tree to predict poverty in Paraguay

25

Netflix prize

26

Netflix prize winners

27

• Punchline

Netflix prize conclusion: ensemble of simple
methods beats one complex method

28

Bagging

29

• Bagging is short for bootstrap aggregation

• It’s a general purpose method for reducing variance in any
machine learning method

• With n independent observations, !", !$, … , !& each with
variance '$, the variance of the mean (̅!) is given by '$/ ̅!
• We usually cannot do this because we don’t have multiple

training datasets

What is bootstrapping?

30

• In short, it’s repeatedly sampling from the training dataset to
develop a series of new datasets.

• E.g. if training dataset has ! observations

Why bootstrapping?

31

What do we do with bootstrapped samples?

32

Bagging

33

• Instead, we can take repeated bootstrap samples from the
training set that achieve a similar result

Bagging algorithm
1. Generate ! bootstrap training datasets
2. Train method on the "-th bootstrapped set to obtain #$∗(')

the prediction for data point '
3. Average all predictions to obtain average prediction over the

bootstrapped samples
#$)*+ ' = 1

!.)/0

1 #$∗) '

South African Heart Attack Data

34

Bagging result on heart attack data

35

Out-of-bag error

36

• Recall that for each bootstrapped sample b is
composed of a subset of the total training data
• For each sample, the data not used to fit the

model is referred to as out-of-bag (OOB)
observations
• We can better approximate out of sample

error by only using out-of-bag observations for
model validation

Random Forests

37

• Random forests are a slight trick to
bagging that highly improves
predictive power

• Many trees do poorly because the
stepwise greedy algorithm doesn’t
fully explore variable and parameter
space

Random Forests

38

• Random forests is like bagging,
only each time a split in a tree is
considered, a random selection of
m predictors is chosen as split
candidates
• A fresh set of m predictors is

taken at each split.
• Typically we choose ! ≈ #

although this is a tuning
parameter!

Cancer dataset

39

Example random forest: cancer data

40

Estimating Random Forest Models Using
“randomForest”

41

Estimating a Random Forest Model Against the
Boston Data

42

Variable “Importance”

43

What is node “purity”?

44

Is it raining?

Y N

Prediction: don’t go out 15
times

Data: don’t go out 15 times
Node is “pure”

Is it below 30
Degrees?

Y N

Prediction: don’t go out 7
times

Data: don’t go out 7
times

Node is “pure”

Prediction: go out 10
times

Data: go out 10 times
Node is “pure”

Prediction: don’t go out
17 times

Data: don’t go out 7
times

Node is not “pure”

Plotting Variable “Importance”

45

Cross-validate to select “mtry”

46

Cross-validate to select “mtry”

47

Mtry value
With lowest MSE

