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Regression Trees
• Tree based methods stratify or 

segment the predictor space into 
different regions
• Regions are stratified via simple 

rules
• The splitting rules can be 

summarized into a tree that is very 
intuitive
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Pros and Cons of Trees
Pros
• Simple
• Easy to interpret
• Easy to explain
• Can be displayed 

graphically!
• Bagging, boosting, and 

random forests very 
powerful (combining trees)
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Cons
• Slow with large datasets
• Not easy to use “out of the 

box”
• Choice of split can be 

unstable



Decision/Regression Trees
• Decision trees can be applied to 

both regression problems (!" ∈ $)
and classification problems !" ∈
{'()**1, '()**2, … , }
• We’ll consider both
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Baseball salary data: how to partition/stratify?
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Baseball salary data: how to partition/stratify?
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Baseball salary data: how to partition/stratify?
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• Only linear 
classification 
rules are allowed, 
e.g. year > 10



Baseball salary data: split 1
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• Split 1: years > 4.5



Baseball salary data: split 2
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• Split 1: years > 4.5

• Split 2: hits > 117.5



Tree Representation
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• Trees are read top-
down

• Most important 
split is at top

• Length represents 
how much within-
cluster variance 
decreases from 
split 



Tree Representation
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Tree Representation
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• At the end of 
the tree are 
“leafs”

• For regression, 
avg value of 
observations in 
leaf => !" for 
observation



Details of tree building algorithm
• Computationally infeasible to consider all combinations of splits

• Instead, use a top-down, greedy approach called recursive 
binary splitting
• Greedy here means at each step, we only consider the best split, 

without caring how it affects successive nodes
• “top down” because we start with the best split and proceed 

downward (no backing up)
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Pruning trees
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• How do we know when to stop splitting 
the data?
• Trees with many splits can overfit the 

data
• Solution is to grow a large tree !", then 

prune it to obtain a smaller sub-tree



Decision tree algorithm (8.1 in ISLR)
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1. Use recursive binary splitting to grow a large tree on the 
training data 

2. Apply pruning to large tree to obtain sequence of subtrees, 
!", !#

3. Use k-fold cross validation to find $!. For each k = 1, . . . ,K :
1. Repeat steps 1 and 2 on all but the k-th fold of training data
2. Evaluate mean squared prediction error on data in left-out k-th fold
3. Average the results for each value of !. Choose the value of !

that minimizes error !
4. Return the subtree that minimizes cross-validated error



Baseball example, unpruned tree
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Cross-validate to find alpha
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Cross-validate to find alpha
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Carseats dataset in ISLR
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tree() function in package “tree” to build 
regression tree
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Estimate a tree model to predict carseat sales
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Estimate a tree model to predict carseat sales
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Plot tree
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Plot tree
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Example tree to predict poverty in Paraguay
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Netflix prize
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Netflix prize winners
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• Punchline



Netflix prize conclusion: ensemble of simple 
methods beats one complex method
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Bagging
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• Bagging is short for bootstrap aggregation

• It’s a general purpose method for reducing variance in any 
machine learning method

• With n independent observations, !", !$, … , !& each with 
variance '$ , the variance of the mean ( ̅!) is given by '$/ ̅!
• We usually cannot do this because we don’t have multiple 

training datasets



What is bootstrapping?
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• In short, it’s repeatedly sampling from the training dataset to 
develop a series of new datasets. 

• E.g. if training dataset  has ! observations



Why bootstrapping?
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What do we do with bootstrapped samples?
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Bagging
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• Instead, we can take repeated bootstrap samples from the 
training set that achieve a similar result

Bagging algorithm
1. Generate ! bootstrap training datasets
2. Train method on the "-th bootstrapped set to obtain #$∗(')

the prediction for data point '
3. Average all predictions to obtain average prediction over the 

bootstrapped samples
#$)*+ ' = 1

!.)/0

1 #$∗ ) '



South African Heart Attack Data
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Bagging result on heart attack data
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Out-of-bag error
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• Recall that for each bootstrapped sample b is 
composed of a subset of the total training data
• For each sample, the data not used to fit the 

model is referred to as out-of-bag (OOB) 
observations
• We can better approximate out of sample 

error by only using out-of-bag observations for 
model validation 



Random Forests
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• Random forests are a slight trick to 
bagging that highly improves 
predictive power

• Many trees do poorly because the 
stepwise greedy algorithm doesn’t 
fully explore variable and parameter 
space



Random Forests
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• Random forests is like bagging, 
only each time a split in a tree is 
considered, a random selection of 
m predictors is chosen as split 
candidates
• A fresh set of m predictors is 

taken at each split. 
• Typically we choose ! ≈ #

although this is a tuning 
parameter!



Cancer dataset
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Example random forest: cancer data
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Estimating Random Forest Models Using 
“randomForest”

41



Estimating a Random Forest Model Against the 
Boston Data
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Variable “Importance”
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What is node “purity”?
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Is it raining?

Y N

Prediction: don’t go out 15 
times

Data: don’t go out 15 times
Node is “pure”

Is it below 30
Degrees?

Y N

Prediction: don’t go out 7 
times

Data: don’t go out 7 
times

Node is “pure”

Prediction: go out 10 
times

Data: go out 10 times
Node is “pure”

Prediction: don’t go out 
17 times

Data: don’t go out 7 
times

Node is not “pure”



Plotting Variable “Importance”
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Cross-validate to select “mtry”
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Cross-validate to select “mtry”
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Mtry value
With lowest MSE


